วันอังคารที่ 25 สิงหาคม พ.ศ. 2558

หน่วยการเรียนรู้ที่ 4

ความสัมพันธ์และฟังก์ชัน
1.ความสัมพันธ์และฟังก์ชัน

คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = dผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต Bคือ เซตของคู่อันดับ (a, b) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต B สัญลักษณ์ ผลคูณคาร์ทีเซียนของเซต A และเซต B เขียนแทนด้วย A x B
2.ฟังก์ชันกำลังสอง

ฟังก์ชันกำลังสอง  คือ  ฟังก์ชันที่อยู่ในรูป  เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ  และ ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ  a , b  และ  c  และเมื่อค่าของ  a  เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ
จะเห็นว่า  ถ้า  a > 0  กราฟเป็นเส้นโค้งหงายขึ้น  a < 0  กราฟเป็นเส้นโค้งคว่ำลง กราฟของฟังก์ชันกำลังสองในรูปนี้มีชื่อว่า  พาราโบลา...อ่านเพิ่มเติม

หน่วยการเรียนรู้ที่ 3

จำนวนจริง
1.จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ ได้แก่
เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย I
เซตของจำนวนเต็มลบ เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I
เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน โดยที่ a,b เป็นจำนวนเต็ม  และ b = 0
เซตของจำนวนรรกยะ : จำนวนที่ไม่ใช่จำนวนตรรยะ ซึ่งไม่สมารถเขียนในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ แต่สามารถเขียนได้ในรูปทศนิยมไม่ซ้ำ และสามารถกำหนดค่าโดยประมาณได้....อ่านเพิ่มเติม


วันจันทร์ที่ 24 สิงหาคม พ.ศ. 2558

หน่วยการเรียนรู้ที่ 2

การให้เหตุผล
              
1.การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป
                การหาข้อสรุปหรือความจริงโดยใช้วิธีการให้เหตุผลแบบอุปนัยนั้น  ไม่จำเป็นต้องถูกต้องทุกครั้ง  เนื่องจากการให้เหตุผลแบบอุปนัยเป็นการสรุปผลเกิดจากหลักฐานข้อเท็จจริงที่มีอยู่  ดังนั้นข้อสรุปจะเชื่อถือได้มากน้อยเพียงใดนั้นขึ้นอยู่กับลักษณะของข้อมูล  หลักฐานและข้อเท็จจริงที่นำมาอ้างซึ่งได้แก่จำนวนข้อมูล หลักฐานหรือข้อเท็จจริงที่นำมาเป็นข้อสังเกตหรือข้ออ้างมีมากพอกับการสรุปความหรือไม่ เช่น  ถ้าไปทานส้มตำที่ร้านอาหารแห่งหนึ่งแล้วท้องเสีย แล้วสรุปว่า....อ่านเพิ่มเติม
               
2.การให้เหตุผลแบบนิรนัย
การให้เหตุผลแบบนิรนัยเป็นวิธีการให้เหตุผลโดยสรุปผลจากข้อความซึ่งเป็นความ จริงทั่วไปมาเป็นข้ออ้างเพื่อสนับสนุนให้เกิดข้อสรุปที่เป็นความรู้ใหม่ที่ เป็นข้อสรุปส่วนย่อยข้อสรุปที่ได้จากการให้เหตุผล
แบบ นิรนัยนั้นจะเป็นข้อสรุปที่อยู่ในขอบเขตของเหตุเท่านั้นจะเป็นข้อสรุปที่ กว้างหรือเกินกว่าเหตุไม่ได้การให้เหตุผลแบบนิรนัยประกอบด้วยข้อความ2กลุ่มโดยข้อความกลุ่มแรกเป็นข้อความที่เป็นเหตุ เหตุอาจมีหลาย ๆเหตุ หลาย ๆข้อความ และข้อความกลุ่มที่สองจะเป็นข้อสรุป ข้อความในกลุ่มแรกและกลุ่มที่สองจะต้องมีความสัมพันธ์กัน
ข้อจำกัดของการให้เหตุผลแบบนิรนัย
         1.การให้เหตุผลแบบนิรนัยเป็นการให้เหตุผลที่มีขนาดใหญ่ซึ่งกำหนด เป็นการวางนัยทั่วไปและมีเหตุรองเป็น เหตุการณ์เฉพาะเพื่อนำไปสู่ข้อสรุป ดังนั้นเหตุจะเป็นข้อความหรือ....อ่านเพิ่มเติม

วันอังคารที่ 18 สิงหาคม พ.ศ. 2558

หนว่ยการเรียนรู้ที่ 1

1.เซต 

ใช้แทนกลุ่มของคน,สัตว์,สิ่งของ หรือสิ่งที่เราสนใจ เราใช้เครื่องหมายปีกกา“{ } ”แสดงความเป็นเซต และสิ่งที่อยู่ภายในปีกกา  เราเรียกสมาชิกของเซต

เซตที่เท่ากัน

เซต 2 เซตจะเท่ากันก็ต่อเมื่อจำนวนสมาชิกและสมาชิกของทั้ง 2 เซต เหมือนกันทุกตัว

เช่น A={1,2,3}          B={1,2,3}     จะได้ A=B

เซตที่เทียบเท่ากัน

เซต 2 เซตจะเทียบเท่ากันก็ต่อเมื่อ จำนวนสมาชิกของทั้ง 2 เซต เท่ากัน

เช่น  A={a,b,c}   ,     B={1,2,3}

จำนวนสมาชิกของ A= จำนวนสมาชิกของ B= 3 ตัว
n( A ) = n ( B ) = 3 ดังนั้น..อ่านเพิ่มเติม

2.สับเซตและพาวเวอร์เซต






สับเซต (Subset) ถ้าสมาชิกทุกตัวของ A เป็นสมาชิกของ B แล้ว จะเรียกว่า A เป็นสับเซตของ B จะเขียนว่า
เซต A เป็นสับเซตของเซต B แทนด้วย A  B
ถ้าสมาชิกบางตัวของ A ไม่เป็นสมาชิกของ B จะเรียกว่า A ไม่เป็นสับเซตของ B
เซต A ไม่เป็นสับเซตของเซต B แทนด้วย A  B
           สมบัติของสับเซต
1) A  A (เซตทุกเซตเป็นสับเซตของตัวมันเอง)
2) A  U (เซตทุกเซตเป็นสับเซตของเอกภพสัมพัทธ์)
3) ø  A (เซตว่างเป็นสับเซตของอ่านเพิ่มเติม
  3.ยูเนียน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต



ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A  B
ตัวอย่างเช่น
A ={1,2,3}
B= {3,4,5}
 A  B = {1,2,3,4,5}
อินเตอร์เซกชัน (Intersection) มีนิยามคือ เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A  B
ตัวอย่างเช่นอ่านเพิ่มเติม